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The problem of the magnetohydrodynamic boundary layer in an anisotropic-
ally conducting incompressible medium is formulated. Considerable use is
made of the expressions obtained in [1]. An investigation is made of the
boundary layer on a flat plate of dielectric material for small values
of the parameter

sH3L

ml = 3T F o't

The magnetic field is taken to be uniform and perpendicular to the
plate. In contrast to the boundary layer in a medium with isotropic con-
ductivity (2}, the flow in a boundary layer with anisotropic conductivity
is not plane, therefore the corresponding similarity problem does not re-
duce to one but to two ordinary differential equations.

1. We shall investigate the problem of a boundary layer in an incom-
pressible fluid having anisotropic conductivity. Let the magnetic
Reynolds number be small

Ry = UL 4

43

In that case, the induced currents are small, and it may be assumed
that the magnetic field H is due to currents outside the fluid (for ex-
ample, in the body about which the fluid is flowing). It follows that
the magnetic field in the flow field satisfies the equation rot H = 0,
and the currents are determined from the generalized Ohm’s law

jmd(E—}———i—va)——a(ij) (“=3)HE) (1.1)
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Let the conditions be such that the electrons have spiral paths
(0,7, =@t 3x1), but the ions do not (a;7; << 1). Under these condi-
tions (we neglect gradients of the electron pressure), Ohm’s law [3] has
the form (1.1), and the coefficient of viscosity has the same value as
it has in the given fluid in the absence of a magnetic field [4]. To
simplify the formulas, we shall take the coefficient of viscosity v, the
conductivity o and the parameter o to be constant.

From (1.1) we have

. 1
j=1romr{E+ FvxH+a[HxE+
4o vH——H (v.n}}-;-am (Enﬂ)} (1.2)

Taking the divergence (div) of equation (1.2) and making use of
Maxwell’s equations and the condition rot H = 0, we obtain the following
equation, which determines the charge density in the flow field

brtp, = ~{~§~Hrozv+—2} v (HY) H —
— 2 (BV) v +(vV) Hl-B+o'H [EV)H + (HV)El}  (13)

The maximum electric field which can be created by charge separation
in the flow field is, in order of magnitude, equal to the field with
j =0, and thus, in view of (1.1), may be assumed to be E, = UH /c.

We shall assume that external electric fields (due to sources dis-
tributed outside the flow field) do not exist, or, at least, are no
greater than fields due to the charge distribution (1.3} in the flow
field (E CUH/c). 1f strong electric fields are created by external
sources p,; (for example, in flow over electrodes to which a high
potential is applied), then these fields are either shielded by a sur-
face charge (if the external conditions are such that current is not
supplied to the fluid), or else there are created currents which are
closed through an external circuit. Currents which flow in the fluid due
to external fields may strongly affect the magnetic field in the fluid,
R, << 1 notwithstanding, and can produce an important force on the flow.

In the latter case, due to the linearity of the equations of electro-
dynamics, it is possible to calculate immediately the currents in the
fluid due to external sources, taking the fluid to be at rest. These
currents must be included in the evaluation of the magnetic field. There-
after, it is necessary to solve the problem of the motion of the fluid
and the distribution of the currents and fields outside the flow field,
induced by the motion of the fluid.

In the solution of the hydrodynamic problem, the electromagnetic
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force has to be represented by two parts, one of which is connected with
external currents and currents inside the fluid due to external electric
fields (this part is known from the solution of the hydrodynamic problem),
and a part connected with the induced currents.

i) =p»+E++peE++ pe:E + '%“j-:»x H’}‘—z‘JXH
4np,, = —o?H [(E,V) H + (HV) E,] (1.4)

j W{E.{,*{‘“(X(HXE+) OL2H(E H)}

llere E, and H are determined by Maxwell’s equations from the given
external sources, E is an unknown function which is determined from the
solution of the magnetohydrodynamic problem, p, and j depend only on the
induced part of the electric field E, and are determined byE, H, v
through the relations (1.3) and (1.2).

Since £ 5 UH /c, and comparing the terms p E, and p_,E with
(G4 x B)/c in (1.4), it is easy to establish that
1.
| e B |~ [peB| < -1 x H] (1.5)
if

qulf max { 1 + o1, 0?12 (1 + 0*})} L1

In addition, |j| << ]j+! for 'E;‘ >> |E|. Thus, if the external fields
are large, E, >> UH/c, and due to these fields large currents can flow
in the fluid, and if, in addition, @7 is not too large, so that (1.5)
holds, then in the solution of the hydrodynamic problem

i=p,E +~J,xH (1.8)
may be used instead of (1.4).

We may also note that the condition
U v 1
SANEE I S

is always fulfilled, since it is the condition for neglect of displace-
ment currents.

The relation (1.6) shows that, for the conditions that have been laid
down, forces are exerted on the fluid only by an external field and by
currents which it produces. In this case, the hydrodynamic problem un-
couples itself from the electric one. The electromagnetic force (1.6) in
the magnetohydrodynamic equations will have a given value, which applies
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not only to the basic flow but also to the boundary layer. Having solved
the hydrodynamic problem, it is possible to find the electric field E
from Maxwell’s equations using (1.3), and then the distribution of the
induced currents from (1.2). For very large values of @T, for which the
inequality (1.5) is violated, the decoupling does not occur. An example
of an analogous formulation of the problem for flow in a canal in a
strong electric field is given in [6].

The decoupled determination of the electric field of the external
sources E, and the sources induced by the motion of the fluid is signifi-
cant for large external fields E, >> UH/c, for which this approach gives
a simplification of the problem. If external fields do not exist in the
flow field, or if they do not exceed in order of magnitude the values of
the induced field (£, X UH/c), then it makes sense, evidently, to solve
the hydrodynamic and electromagnetic problems simultaneously for given
external sources: in this case, for R, << 1, currents in the fluid need
not be included in computing the magnetic field, and the latter may be
computed separately from the given external currents. Having the above
remarks in mind, we shall now investigate problems in which the external
electric fields are comparable to the induced ones*.

If the external electric fields are comparable to the induced ones,
then £ S UH /c and j <X oUH /c, as follows from (1.2). The change of
the magnetic field across the boundary layer is small, while the thick-
ness of the boundary layer is determined by viscous forces [1]. From
this it follows that inside the boundary layer

oH [ oy =0 (1.7

Here, y is the coordinate across the boundary layer. Therefore in the
boundary layer equations H(x, z) is a function of the coordinates x, :z
along the boundary layer. This function is the value of a function
H*(x, y, z) at points of the boundary of the body, i.e. H*(x, o0, z) =
H(x, z).

The function H* satisfies the equations
rot H* = j,* div H* =0 (1.8)

Here j* is the current density outside the flow field.

* In connection with the possibility of separating the electric fields
into external and induced currents, note should be made of a similar
hypothesis made in [1].
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In accordance with (1.3), the charge density. inside the boundary
layer is

UH
Pe S o5~ (1.9)

(6 is a characteristic thickness of the viscous boundary layer.) From
this it follows that the "electric" force pE in the boundary layer is
negligibly small in comparison with the magneclc" force (J x B)/c if

Y max {1 + o', 07 (1 + 0*1)) <1 (1.10)

In cases of practical interest, this inequality may be violated [1]
only for very large or.

We note that, in view of (1.5), the electric force is also negligibly
small, compared to the magnetic force, in the flow outside the boundary
layer. It is interesting that, for increasing ot (1.9) is first violated
(5 << L) and then (1.5), i.e. with increasing @t the electric force first
becomes effective in the boundary layer equations, and only for very
large ot does it become effective in the main flow (for such large ot the
condition ©;7, << 1 may be violated).

Thus, we have for the electromagnetic force the expression

i=1jxB= {E+ vxn+a[an+—vm]}xH(i.u)

g

In order to write the expression for the electromagnetic force in the
boundary layer equations, terms of order & must be dropped in equation
(1.11), since only terms of order unity are retained in the boundary
layer equations. The expression for the main part of the electromagnetic
force f£° figuring in the boundary layer equations is easily obtained, if
the estimates of boundary layer theory are made in (1.11):

1
= lpel = S B SvexH fa[HxE 4+ 5 v.H ]} xH (1.42)
Here E° is the main part of the electric field [1], i.e. the electric
field computed with an accuracy up to terms of order §. The index 7 de-
notes a projection of the corresponding vector onto the x, z plane.

In [1] it is shown that, if the charge density in the boundary layer
satisfies condition (1.9), the tangential component of the main part of
the electric field E;° satisfies, in the boundary layer, the equation

E.° /oy =20 (1.13)
while the normal component (Ey°) is related to the charge density in the
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boundary layer by the equation

OE,° | 0y = 4npy° 1.14)

Here p,° is the charge density, with accuracy up to terms of order
UH /c&.

Equation (1.13) shows that E _© does not change across the boundary
layer. In the boundary layer equations, E;° is to be considered a known
function of the coordinates x, z determined from the solution to the
problem outside the boundary layer (in problems of flow over bodies, this
corresponds to the solution of the flow problem in the basic flow and the
distribution of the field inside the body). Equation (1.14) gives the
variation of Eyo in the boundary layer.

In the problem under consideration, the charge density in the boundary
layer is given by equation (1.3). It is easy to prove, in this case,
taking into account (1.7) and (1.13), that p,° satisfies the relation

. 1 a a aE..o
43’(pe = — —-@IV“ fo ] +%Hy@(v‘l'n“) —d"HU’ a;

c

(1.15)

Integrating (1.14), making use of (1.15), we obtain

H
ES° = T‘;m? [— ic-lV-gX Ht|+a_c“! (Vtﬂm)] + ¢ (z, 2) (116)

Here ¢(x, z) is an arbitrary function.

Considering the boundary layer on the body, v, = 0 for y = 0, there-
fore Ey°|y=0 = ¢(x, z) on the body. If the body is a dielectric, then
j, =0 for y = 0 and, therefore, in view of (1.2)

@ (x9 Z) = - 'f"_T_f:W [(l l H. x Ero | + d”HyEto'H‘!] (11.7)
v

y=0

In this case, (1.16) gives the distribution of E ° in the boundary
layer, while for the solution of the problem outside the boundary layer
the following boundary condition is obtained from (1.16):

0 1 1
Ey !U=°°=E'ulu=o=1_.ﬁﬁ717[_?mxn‘l+ (1.18}

H
+ 20 (U. H) — | H, xE."| — GHE* B |

y=0

Here U is the velocity of the flow outside the boundary layer, the
asterisk denotes the field which is determined in the solution of the
problem of flow of an ideal fluid and the problem of the distribution of
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the field in the body.

If the body is a conductor, the boundary condition for E* will be,
from (1.13)

E* =20 (1.19)

In this case, ¢{x, 2z} in (1,16) is determined by the solution of the
problem outside the boundary layer

1 t ef,
P (3', Z) = Ey‘ ’11=0— W[— 7[UXH¢ I -+ '—c—vU'HT]v=o (120)

and the function ¢(x, z) is related to the current density jyo by the
relation

1 22 Lo
9@ 2) = (Tags (1.21)

as follows from (1.2). Equations (1.2), (1.13) to (1.21) show that, for
the main part of the normal component of the current density in the
boundary layer, the following relation is valid

3,19y = 0 4.22)
From (1.16) to (1.18) and (1.20) it follows that E _° does not vary
across the boundary layer (3E °/dy = 0) only if H_ = 0. The correspond-

ing boundary layer equations %or that case were obtained in a recently
published paper [7]. From (1.12) it follows that the change of pressure
across the boundary layer is of order &.

The boundary layer problem may be formulated as follows

du du Ju 3u 1 dp 1 o Op
ow ow | Ow o 1 adp 1 ,, Ou ov aw
P I z]63/ tw az v o2 p 9z l p 1% oz i dy ] 9z 0

Here f° is determined by equation (1.12), in which E}° is given by
(1.16), while E°, o(x, z) and H(x, 2z) are determined from the boundary
conditions and the solution of the external problem.

We may note that the system (1.23) remains the same for R, <1, for
which case it changes only in the formulation of the outer problem. The
formulation of the outer problem for R, <1 is analogous [1] to its
formulation for v = 0, only the expression for the magnetic force
changes, which for ot # 0 must be given by expression (1.11).

2. Boundary layer on a half-infinite flat plate. As an
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example, we shall investigate the problem of the boundary layer on a
semi-infinite, dielectric flat plate,

We shall take the plate to be the half-plane y = 0, x > 0. We shall
assume that the magnetic field in the region x > 0 is uniform and normal
to the plate (H = Hye ); in the region x < 0 we have H = 0. In the region
z < 0 the flow does not interact with a magnetic field and it may be con-
sidered to be a uniform flow with velocity U along the x-axis.

In addition, we shall assume that all quantities are independent of
z, i.e. 9/3z = 0. This assumption becomes obvious if the problem of the
flow over the plate is considered to be the limiting case of flow over a
body of revolution. With this assumption, it follows from the equation
rot E = 0 and the condition that the electric field vanish at infinity,
that £ =

With the assumptions made, equations (1.23) take the form

du 63u 1 dp Hyts R — CE"O}
l&é;: + Uay 33/3 _‘p"—az; - {}29(1 Il m‘zt:"){u - oW @ HD
ow dw Fw Hy2s o
e T V% TV T &AL o) 1“”“ —w E,‘} @D
ou oy
wstm=0 E°=E* (2072, = p* (22)

The plate is a dielectric and H = 0, therefore it follows from (1.16)
to (1.18) that £E° = o(x, 2) =0 in the boundary layer, while E © is de-
termined from the solution of the outer problem.

Using (1.2), (1.3) and (1.11), the equations describing the flow out-
side the boundary layer may, with the assumptions made, be written in
the form

ou* ou* 1 ap* Hys B *
* * — e — 82 ig* —
7 TV 5y P oz czp(i+mgr2){u + ow* —ot Ho}
ov* av* 1 ap*
* 0V x0T rop
ox +v oy p dy

. O0* « OW* Hzs % « 1 cEL* du* av*
w ety = mas e e e Gty =0 @Y
22 9Ev*

du* av*
f J— * — pul, PR,
rot E X div E¥ = 4np,* = =+ °F ay O 5y

The asterisks denote quantities connected with the outer flow, From
(1.18), the solution of the system (2.2) describing the outer flow must
satisfy the following boundary conditions:

v =0, EX =0 for y=0 (2.3)

In addition, the form of the solution of the system (2.2) depends on
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the conditions at infinity, in particular on the behavior of the electric
field at infinity, but these conditions are connected with the particu-
lars of the problem, and have to be formulated in the statement of the
problem.

The system of equations (2.2) has a solution corresponding to uniform
flow u* = U, v* = »* = 0 only for j = 0, when charge accumulates at in-
finity to balance the Hall field in the x-direction. The sclution of the
problem for that case is discussed in [7].

In what follows we shall assume that the charge which is carried to
infinity by the currents j_ is neutralized in some manner, i.e. j_ 7 0.
Naturally, the solution of the problem will depend on the conditions for
the electric field at infinity (the conditions for neutralizing the
charge).

To simplify the solution of the problem, we shall assume that the
parameter

HAsL

ml = W< 1 (2.4)

i.e. the electromagnetic action on the flow is small. In that case the
problem in the boundary layer and in the outer flow may be linearized

around the Blasius solution (an analogous treatment of the problem for
wtr = 0 is given in [2]). We shall assume that T is not too large, so

that

otmL L1
Let us write all quantities in the form

u = u, + mLu,, v = vy + mLv,, E = E, + mLE, etc. (2.5)

The subscript zero denotes quantities corresponding to the solution
for mL = 0 (o = 0). Introduce the dimensionless quantities

u v w
= E?, 3/554%?, u= g, V=g, W= 06
R E=CE_ R=UL (.6)
P= gp» =UH, ' =7

Here U is the velocity of the outer flow corresponding to the solu-
tion of the problem for mL = 0 (U = uy*), R is the Reynolds number. In
what follows, the dimensionless quantities (2.6) are used throughout.

Putting (2.5) into equations (2.1) and (2.2) and collecting the main
terms (not containing mL) we find that quantities with index zero in the
boundary layer correspond to the Blasius problem, and quantities with
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index zero in the outer flow correspond to a uniform flow with velocity
uy* = U.
To determine the quantity E;* we obtain from (2.2) the equations

oE. *
rot E* =0 divE* = — o*t® e
L3 ’ 0 dy

We shall assume that charge cannot accumulate at infinity (complete
charge neutralization at infinity). Then the electric field potential
O(E = grad 0) is equal to zero at infinity. Since, in addition, the con-
dition E* =360 /93y = 0 holds on the plate (y = 0), then E* =0 is a
valid solution for E,*. We may note that, with the assumptions adopted,
there is a current along the outer flow whose density, to terms of order
mL, is given by j, = coTUHy/c(l + 0l1?).

Using the solution for mL = 0, it is possible to obtain from systems
(2.1), (2.2) linear systems of equations for the corrections (u,, v, E,,
etc.) to the solution for mL = 0, which are connected with the effect of
the electro-magnetic forces. The system of equations for quantities con-
nected with the outer flow has the form

ou* Ip* v* . am* dun* ouy* on*
5w = — ox b az — T oy’ =0 Gty =0
. 8w1‘ avl‘ aEm‘ (2.7)
* o * . — 22
rot E;* = (0, divE;* = - + ot oy O,

and for quantities relating to the boundary layer the form

duy duy Ouy i S . W) . S
Uy, t+ w5+ vo@“l‘”l@"_ﬂa_yi‘“‘ 9z W 2.8)
ow 8wy 1 9y du; | Oy
ue;?;—’ + Ny TRoP ©TUg, 37‘5-3; =0, P =p* (22)

We may note that if (2.4) is valid but (2.5) is violated due to large

ot, then a term wtw, will appear in the first equations of (2.7) and
(2.8).

Since there are currents flowing in the flow outside the boundary
layer, this flow, generally speaking, will not be uniform, due to the
action of electromagnetic forces. In the approximation being considered,
the projection of the electromagnetic force on the direction of the basic
flow (x-axis) is constant. Therefore, by having a constant pressure
gradient (9p,*/9x # 0), it is possible to obtain a velocity in the x-
direction which is constant and equal to the velocity of the outer flow
for mL = 0 (u,* = 0, u* = uy* + mlu,* = U). Here the quantity dp,*/Ox has
to be determined from the solution of the system (2.7). We note that, due
to the assumption Jp,*/dz = 0, the component of electromagnetic force in
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the z-direction, which in the given approximation is also constant, can-
not be balanced by a pressure gradient and, therefore, there is a z-com-
ponent of velocity in the outer flow. Since the component of electro-

magnetic force in the y-direction in the outer flow is zero, it is
natural to take dp*/dy = 0,

With the assumptions made, system (2.7) has the solution
w*=0 9*=0 06p*/0z=—1, w*=oe1z (2.9
for the dynamic quantities.

For determining the perturbations E;* to the electric field, the
following system of equations is obtained from (2.7) together with (2.9):

rot E;* = 0, div E* = ot — o*?E,* / dy
This system has to be solved in the context of the assumptions made
above, taking into account that the electric potential 9,(E,* = grad o))

is equal to zero at infinity and 90,/9y = 0 at y = 0.

With (2.9), the system (2.8) can finally be put in the form

duy dug duy du, 1 0%y
By T g T gt g~ =1
6u1 Bv1 - 8w1 3w1 1332171 .
Ty =0 Yo T %G — Rap T 9T (2.10)

In virtue of (2.9), the boundary conditions have the form
ul = Ul = wl = 0 for y:o, ul - O, wl = WTT for Y == (2.11)

It is easy to see that the first two equations of the system (2.10)
do not contain w;, and, therefore, can be integrated separately. The
solution of these two equations for the boundary conditions (2.11) may
be reduced to the solution of a single differential equation in the vari-
able n = y¥ (R/x), which is integrated in [2]. It is evident that in the
linearized case the projection of the velocity on the xy-plane depends
on o1 only through the parameter ml.

The last equation of (2.10) can be reduced to an ordinary differential
equation if the function ¥(n) is introduced through the following rela-
tion

w; = 017¥ (1) (2.12)

Then the last equation of (2.10) takes the form
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g +~}f¢, T YA fo =0 (243) 40

¥ al
. . 8 A/’,/’d
Here fo(n) is a function connected
with the stream function of the Blasius
solution by the relation 1 //
¥ (=) 4
fo ) =222 /
U
VUvz 2z
The boundary conditions (2.11) for 7
v, give for Y the form ¢ ? p 5
YO =0  ¥(o)=1 (2.14) Fig. 1.

Equation (2.13) with the conditions (2.14) was numerically integrated.
The function ¥(n) obtained is shown in Fig. 1.

We note that if (2.5) is violated then the system analogous to (2.10)
will not reduce to a system of ordinary differential equations in the
variable 1.

Figures 2 and 3 show the profiles of the longitudinal velocity u and
the transverse velocity » for different values of the parameter oT at a
fixed value of the parameter

GH'()2 x

s = 0.5

m*x =

Figure 2 shows that the retardation of the flow in the x-direction
due to electromagnetic forces is decreased with increasing 7. For ov-®
(inequality (2.5) will be satisfied if m*x < 1) the velocity profile in
that direction tends toward the velocity profile for H, = 0.

Figure 3 shows that the transverse velocity grows at first with in-
creasing o and then decreases, w_, being reached for o1 = 1. For o1~
the transverse velocity w - 0.

We note that the approach to the Blasius solution for wt = ® and
fixed o is related to a decrease of the effective conductivity. From
(1.1) it follows that, for vt - ® and o = const, the currents become
parallel to the magnetic field j x H~ 0, i.e. in our case j, - 0,

J, = 0 and, therefore, the electromagnetic action on the flow disappears.

The coefficients of the longitudinal and transverse resistances, up
to terms of order ml and expressed in dimensional quantities, have the
form
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_ —g0u m*y
e = 20U zay o= e (1O + o 12 @) =
VR (0.382 + 1.447 - 255)
—g 0w 2 '
o =G| =t e ¥ ) —V_x 135 m*o s

Here R, = Ux/v is the Reynolds number, f,(n) is a function related to
u by the relation u = U(f," + mxf,")

W=/
024
10 V> ¥ y /'la_:r-a‘b‘d,/j
g 4 % / we=05,2
wT=25/ 1/1$2/ '/
¥ //
/ m*z=0s A
A imzeas
0.08
2
d [
' 2 4 6 ) 7
Fig. 2. 2 ¢ é
Fig. 3.
BIBLIOGRAPHY

1. Liubimov, G.A., K postanovke zadachi o magnitogidrodinamicheskom
pogranichnom sloe (On the formulation of the problem of the
magnetohydrodynamic boundary layer). PMM, Vol. 26, No. 5, 1962.

2. Rossow, V.U., On flow of electrically conducting fluids over a flat
plate in the presence of a transverse magnetic field. NACA TN 3971,

1957.

3. Liubimov, G.A., O forme zakona Oma v magnitnoi gidrodinamike (On the
form of Ohm’s law in magnetohydrodynamics). PHMM Vol. 25, No. 4,
1961.



Magnetohydrodynamic boundary layer 1645

Gubanov, A.I. and Lun’kin, Iu.P., Uravneniia magnitnoi plasmodinamiki
(The equations of magnetoplasmadynamics). ZhTF Vol. 30, No.9, 1960.

Kulikovskii, A.G. and Liubimov, G.A., Magnitnaia gidrodinamika
(Magnetohydrodynamics). Fizmatgiz, 1962.

Liubimov, G.A., O reshenii nekotor’ ikh zadach magnitnoi gidrodinamiki
pri anizotropnoi providomosti (On the solution of certain problems
of magnetohydrodynamics for anisotropic conductivity). PMM Vol. 28,
No. 3, 1962.

Gubanov, A.I. and Pushkarev, 0.I., Viazkii pogranichn’ii sloi v
magnitnoi gidrodinamiki pri konechnom wt (The viscous boundary
layer in magnetohydrodynamics for finite wT). ZARTF Vol. 32, No. 6,
1962.

Translated by A.R.



