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The problem of the magnetohydrodynamic boundary layer in an anisotroptc- 
ally conducting incompressible medium is formulated. Considerable use is 
made of the expressions obtained in [ll. An investigation is made of the 
boundary layer on a flat plate of dielectric material for small values 
of the parameter 

The magnetic field is taken to be uniform and perpendicular to the 

plate. In contrast to the boundary layer in a medium with isotropic con- 
ductivity [21, the flow in a boundary layer with anisotropic conductivity 
is not plane, therefore the corresponding similarity problem does not re- 
duce to one but to two ordinary differential equations. 

1. We shall investigate the problem of a boundary layer in an incom- 

pressible fluid having anisotropic conductivity. Let the magnetic 

Reynolds number be small 

In that case, the induced currents are small, and it may be assumed 

that the magnetic field H is due to currents outside the fluid (for ex- 

ample, in the body about which the fluid is flowing). It follows that 
the magnetic field in the flow field satisfies the equation rot fl = 0, 

and the currents are determined from the generalized Ohm’s law 

J ‘=u E+ ( +vxII ) -u(jx H) 
(a=+) (1.1) 
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Let the conditions be such that the electrons have spiral paths 

(%% 5 OT 2 l), but the ions do not (OiTi << 1). Under these condi- 
tions (we neglect gradients of the electron pressure), Ohm’s law [31 has 
the form (1.11, and the coefficient of viscosity has the same value as 
it has in the given fluid in the absence of a magnetic field [4]. To 
simplify the formulas, we shall take the coefficient of viscosity v, the 
conductivity u and the parameter a to be constant. 

From (1.1) we have 

Taking the divergence (div) of equation (1.21 and making use of 
Maxwell’s equations end the condition rot H = 0, we obtain the following 
equation, which determines the charge density in the flow field 

bLpe=- ( -+Irotv+-$ v(HV)H- 

- + [(HV) v -+(&) HI~H-WE f@Vf R + (HO) Ef ) fi*% 

The mamma electric field which cau be created by charge separation 
in the flow field is, in order of magnitude, equal to the field with 

j = 0, and thus, in view of (1.1)‘ may be assumed to be En = UH/c. 

We shall assume that external electric fields (due to sources dis- 

tributed outside the flow field) do not exist, or, at least, are no 
greater than fields due to the charge distribution (1.3) in the flow 
field (E < UH/c). If strong electric fields are created by external 

sources p,+ (for example, in flow over electrodes to which a high 
potential is applied), then these fields are either shielded by a sur- 
face charge (if the external conditions are such that current is not 
supplied to the fluid), or else there are created currents which are 
closed through an external circuit. Currents which flow in the fluid due 
to external fields may strongly affect the magnetic field in the fluid, 
R, +C 1 notwithstanding, and can produce au important force on the flow. 

In the latter case, due to the linearity of the equations of electro- 
dynamics, it is possible to calculate inediately the currents in the 
fluid due to external sources, taking the fluid to be at rest. ‘Obese 
currents must be included in the evaluation of the magnetic field. ‘lhere- 
after, it is necessary to solve the problem of the motion of the fluid 
and the distribution of the currents and fields outside the flow field, 
induced by the motion of the fluid. 

In the solution of the hydraulic problem, the electrunagnetic 
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force has to be represented by two parts, one of which is connected with 
external currents and currents inside the fluid due to external electric 
fields (this part is known from the solution of the hydrodynamic problem), 
and a part connected with the induced currents. 

j -I,,,+E++p,E++p,,E+~j+xIf+~jxH 

f&p,, - -UC% I(‘lE,v) H + QR’) &I (1.4) 
. 
J+ = l,_;lr' {E, +a(H xE+) -i-~'H(E+H)) 

IIere F+ and H are determined by Maxwell’s equations from the given 
external sources, E is an unknown function which is determined from the 
solution of the ma~etohydrod~~ic problem, p, and j depend only on the 
induced part of the electric field E, and are determined by E, H, v 
through the relations (1.3) and ( 1.2). 

Since E 6 UH /c, and comparing the terms p,& and p,$ with 
(j, x fl)fc in (1.41, it is easy to establish that 

1 pe+E I - fp$+l -=G + I j+ x H I 

if 

(1.5) 

-$ ma% ( 1 + wz, 0~2’ (1 + 02z2)) < 1 

In addition, 1 jl << ] j,] for lE+l >> }Ef . ‘Ihus, if the external fields 
are large, E+ >> UHIc, and due to these fields large currents can flow 
in the fluid, and if, in addition, COT is not too large, so that (1.5) 
holds, then in the solution of the hydrodynamic problem 

f = p,,E++;J+xH (4 31 

may be used instead of (1.4). 

We may also note that the condition 

is always fulfilled, since it is the condition for neglect of displace- 

ment currents. 

‘lhe relation (1.6) shows that, for the conditions that have been laid 

down, forces are exerted on the fluid only by an external field and by 
currents which it produces. In this case, the hydrodynamic problem un- 
couples itself from the electric one. ‘lhe electromagnetic force (1.6) in 
the magnetohydrodynamic equations will have a given value, which applies 
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not only to the basic flow but also to the boundary layer. Having solved 
the hydrodynamic .problem, it is possible to find the electric field E 

from Maxwell’s equations using (1.3), and then the distribution of the 

induced currents from (1.2). For very large values of UT, for which the 

inequality (1.5) is violated, the decoupling does not occur. An example 

of an analogous formulation of the problem for flow in a canal in a 
strong electric field is given in [6]. 

The decoupled determination of the electric field of the external 

sources I& and the sources induced by the motion of the fluid is signifi- 

cant for large external fields E+ >> ClH/c, for which this approach gives 

a simplification of the problem. If external fields do not exist in the 

flow field, or if they do not exceed in order of magnitude the values of 

the induced field (E+ & UH/c), then it makes sense, evidently, to solve 

the hydrodynamic and electromagnetic problems simultaneously for given 

external sources: in this case, for Rn << 1, currents in the fluid need 

not be included in computing the magnetic field, and the latter may be 

computed separately from the given external currents. Having the above 

remarks in mind, we shall now investigate problems in which the external 

electric fields are comparable to the induced ones*. 

If the external electric fields are comparable to the induced ones, 

then E 6 UH/c and j 6 uUH/c, as follows from (1.2). ‘lhe change of 

the magnetic field across the boundary layer is small, while the thick- 

ness of the boundary layer is determined by viscous forces El]. From 
this it follows that inside the boundary layer 

aa/ay =o (4.7) 

Here, y is the coordinate across the boundary layer. ‘Iherefore in the 

boundary layer equations H(x, z) is a function of the coordinates. x, z 

along the boundary layer. lhis function is the value of a function 

H*(x, y, Z) at points of the boundary of the body, i.e. f!*(r, o, z) = 

w, z). 

The function H* satisfies the equations 

rot H* = j,* div H* = 0 (1.8) 

Here j* is the current density outside the flow field. 

l In connection with the possibility of separating the electric fields 
into external and induced currents, note should be made of a similar 
hypothesis made in [ll. 
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In accordance with (1.31, the charge density, inside the boundary 
layer is 

(1.9) 

(6 is a characteristic thickness of the viscous boundary layer.) From 
this it follows that the "electric" force p$ in the boundary layer is 
negligibly small in comparison with the "magnetic" force (j x H)/c if 

-$- max {I + o*z, w2z2 (1 + 02z2)} < 1 (1.10) 

In cases of practical interest, this inequality may be violated f11 
only for very large ov. 

We note that, in view of (1.51, th e electric force is also negligibly 
small, caapared to the magnetic force, in the flow outside the boundary 
layer. It is interesting that, for increasing uv (1.9) is first violated 
(6 << L) and then (l,S), i.e. with increasing or the electric force first 
becomes effective in the boundary layer equations, and only for very 
large OT does it become effective in the main flow (for such large o-r the 

condition Oiri << 1 may be violated). 

Thus, we have for the electromagnetic force the expression 

In order to write the expression for the electromagnetic force in the 
boundary layer equations, terms of order 6 must be dropped in equation 
(l.ll), since only terms of order unity are retained in the boundary 
layer equations. The expression for the main part of the electromagnetic 
force f” figuring in the boundary layer equations is easily obtained, if 
the estimates of boundary layer theory are made in (1.11): 

f” =;pXR =+~{E”+~.v,xH+a[HxEo ++P]).H (1.12) 

Here E” is the main part of the electric field [II , i.e. the electric 
field computed with an accuracy up to terms of order 6. The index T de- 
notes a projection of the corresponding vector onto the x, .z plane. 

In [l] it is shown that, if the charge density in the boundary layer 
satisfies condition (1.91, the tangential component of the main part of 
the electric field q” satisfies, in the boundary layer, the equation 

i?E,” / @ = 0 (1.13) 

while the normal component (Eye) is related to the charge density in the 
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boundary layer by the equation 

i3Evo I i?y = drip,” (1.14) 

Here p,’ is the charge density, with accuracy up to terms of order 
UH/c& 

Fquation (1.13) shows that q” does not change across the boundary 
layer. In the boundary layer equations, Fto is to be considered a known 
function of the coordinates x, z determined from the solution to the 
problem outside the boundary layer (in problems of flow over bodies, this 
corresponds to the solution of the flow problem in the basic flow and the 
distribution of the field inside the body). Equation (1.14) gives the 
variation of EY ’ in the boundary layer. 

In the problem under consideration, the charge density in the boundary 
layer is given by equation (1.3). It is easy to prove, in this case, 
taking into account (1.7) and (1.13), that pea satisfies the relation 

Integrating (1.141, making use of (1.151, we obtain 

E,“= ’ 
1+ aaHya 

-+H,I+~ (~a)] + q (5, 2) (1.16) 

Here q(n, z) is an arbitrary function. 

Gnsidering the boundary layer on the body, vv = 0 for y = 0, there- 
fore EyoI y=,, = qdx, z) on the body. If the body is a dielectric, then 

in = 0 for y = 0 and, therefore, in view of (1.2) 

In this case, (1.16) gives the distribution of Eye in the boundary 
layer, while for the solution of the problem outside the boundary layer 
the following boundary condition is obtained from (1.16): 

Here U is the velocity of the flow outside the boundary layer, the 
asterisk denotes the field which is determined in the solution of the 
problem of flow of an ideal fluid and the problem of the distribution of 
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the field in the body. 

If the body is a conductor, the boundary condition for p will be, 
from (1.13) 

E,* = 0 (1.19) 

In this case, cpfx, z) in (1.16) is determined by the solution of the 
problem outside the boundary layer 

and the function cp(x, 
relation 

t) is related to the current density j,' by the 

(1.21) 

as follows from (1.2). Equations (1.2)‘ (1.13) to (1.21) show that, for 
the main part of the normal component of the current density in the 
boundary layer, the following relation is valid 

ai," Jay = 0 (1.2) 

From (1.16) to (1.18) and (1.20) it follows that E o does not vary 
across the boundary layer @E "/ay = 0) only if q = 6. 'lhe correspond- 
ing boundary layer equations z or that case were obtained in a recently 
published paper 171. From (1.12) it follows that the change of pressure 
across the boundary layer is of order 6. 

'lhe boundary layer problem may be formulated as follows 

Here f”is determined by equation (1.12), in which EYo is given by 

(1.16), while i$O, cp( x, 2) and H(x, z) are determined from the boundary 

conditions and the solution of the external problem. 

We may note that the system (1.23) remains the same for R, gl, for 
which case it changes only in the formulation of the outer problem. 'Ibe 
formulation of the outer problem for R, 6 1 is analogous 111 to its 
formulation for 07 = 0, only the expression for the magnetic force 
changes, which for OT # 0 must be given by expression (1.11). 

2. Boundary layer on a half-infinite flat plate. As an 
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example, we shall investigate the problem of the boundary layer on a 
semi-infinite, dielectric flat plate. 

We shall take the plate to be the half-plane y = 0, x > 0. We shall 
assume that the magnetic field in the region x > 0 is uniform and normal 
to the plate (H = Hoey); in the region x < 0 we have 11 = 0. In the region 
x -C 0 the flow does not interact with a magnetic field and it may be con- 
sidered to be a uniform flow with velocity U along the x-axis. 

In addition, we shall assume that all quantities are independent of 
z, i.e. apz = 0. lh is assumption becomes obvious if the problem of the 
flow over the plate is considered to be the limiting case of flow over a 
body of revolution, With this assumption, it follows from the equation 
rot E = 0 and the condition that the electric field vanish at infinity, 
that EZ = 0. 

With the assumptions made, equations (1.23) take the form 

g+g=o, E,” = E,” (z, 0, z), p = p* (22) 

The plate is a dielectric and HT = 0, therefore it follows from (1.161 
to (1.181 that EY o = Q(X, z) = 0 in the boundary layer, while g,” is de- 
termined from the solution of the outer problem. 

Using (1.2), (1.3) and (l.ll), the equations describing the flow out- 
side the boundary layer may, with the assumptions made, be written in 
the form 

The asterisks denote quantities connected with the outer flow. From 
(1.18), the solution of the system (2.2) describing the outer flow must 
satisfy the following boundary conditions: 

v” = 0 * E,” = 0 for y=o (2.3) 

In addition, the form of the solution of the system (2.2) depends on 
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the conditions at infinity, in particular on the behavior of the electric 
field at infinity, but these conditions are connected with the particu- 

lars of the problem, and have to be formulated in the statement of the 

problem. 

‘Ihe system of equations (2.2) has a solution corresponding to uniform 

flow U* = U, u* = 18” = 0 only for jx = 0, when charge accumulates at in- 

finity to balance the Hall field in the x-direction. The solution of the 

problem for that case is discussed in c73, 

In what follows we shall assume that the charge 

infinity by the currents j, is neutralized in some 

Naturally, the solution of the problem will depend 

the electric field at infinity (the conditions for 

charge). 

which is carried to 

manner, i.e. jx # 0. 

on the conditions for 

neutralizing the 

To simplify the solution of the problem, we shall assume that the 

parameter 

i.e. the electranagnetic action on the flow is small. In that case the 

problem in the boundary layer and in the outer flow may be linearized 

around the Blasius solution (an analogous treatment of the problem for 

o-r = 0 is given in [Zf ). We shall assume that OT is not too large, so 

that 

Let us write all quantities in the form 

u = u. + mLul, 21 = 77, + mLv,, E = E. + mLEl etc. (2.5) 

The subscript zero denotes quantities corresponding to the solution 

for ml = 0 (u = 0). Introduce the dimensionless quantities 

Here U is the velocity of the outer flow corresponding to the solu- 
tion of the problem for nL = 0 (U = ~(a*), R is the Reynolds number. In 

what follows, the dimensionless quantities (2.6) are used throughout. 

Putting (2.5) into equations (2.1) and (2.2) and collecting the main 

tenas (not containing d) we find that quantities with index zero in the 
boundary layer correspond to the Blasius problem, and quantities with 
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index zero in the outer flow correspond to a uniform flow with velocity 

uO 
*= u. 

To determine the quantity Q,* we obtain from (2.2) the equations 

rot E,,* = 0 
W,.' 

, div E,* = - o%* ay 

We shall assume that charge csnuot accumulate at infinity (complete 
charge neutralization at infinity). Then the electric field potential 
@(E = grad 0) is equal to zero at infinity. Since, in addition, the con- 
dition E * = aO/ay = 0 holds on the plate (y = 0), then 4’ = 0 is a 
valid so ution 1 for Eo*. We may note that, with the assumptions adopted, 
there is a current along the outer flow whose density, to terms of order 
RL, is given by jx = owvlflYo/c(l + &9* 

Using the solution for mL = 0, it is possible to obtain from systems 
(2.1), (2.2) linear systems of equations for the corrections (u,, ul, E,, 
etc.) to the solution for ml, = 0, which are couuected with the effect of 
the electro-magnetic forces. The system of equations for quantities con- 
netted with the outer flow has the form 

thl* w 1 

al:= ax ---, 
w _ _ h* 

ax ay’ 

rot El* = 0 t &VEX* = '$i$ 

and for quantities relating to the boundary layer the form 

We may note that if (2.4) is valid but (2.5) is violated due to large 
OT, then a term OT wI will appear in the first equations of (2.7) and 
(2.8). 

Since there are currents flowing in the flow outside the boundary 
layer, this flow, generally speaking, will not be uniform, due to the 
action of electromagnetic forces. In the approximation being considered, 
the projection of the electromagnetic force on the direction of the basic 
flow (x-axis) is constant. Therefore, by having a constant pressure 
gradient (aPI*,Bx # 0), it is possible to obtain a velocity in the x- 
direction which is constant and equal to the velocity of the outer flow 
for rL = 0 (ul* = 0, u+ = uO* + mLul+ = U). Here the quantity apI*/& has 
to be determined from the solution of the system (2.7). We note that, due 
to the assumption ?$.I~*/& = 0, the component of electromagnetic force in 



1842 G.A. Liubimov 

the z-direction, which in the given approximation is also constant, can- 
not be balanced by a pressure gradient and, therefore, there is a z-com- 
ponent of velocity in the outer flow. Since the component of electro- 
magnetic force in the y-direction in the outer flow is zero, it is 
natural to take ap*& = 0. 

With the assumptions made, system (2.7) has the solution 

for the dynamic quantities. 

For determining the perturbations E,* to the electric field, the 
following system of equations is obtained from (2.7) together with (2.9): 

rot El* = 0 , div El* = or - &cad&* / ay 

This system has to be solved in the context of the assumptions made 
above, taking into account that the electric potential @l(E,* = grad @,) 
is equal to zero at infinity and a@,/>, = 0 at y = 0. 

With (2.9), the system (2.8) can finally be Put in the form 

(2.10) 

In virtue of (2.9)) the boundary conditions have the form 

Ul = 271 = WI = 0 for y=O, Ui=O, W1=1:OZZ for y--co (2.11) 

It is easy to see that the first two equations of the system (2.10) 
do not contain wl, and, therefore, can be integrated separately. The 
solution of these two equations for the boundary conditions (2.11) may 
be reduced to the solution of a single differential equation in the vari- 
able n = yJ (R/x), which is integrated in [2]. It is evident that in the 
linearized case the projection of the velocity on the xy-plane depends 
on OT only through the parameter mt. 

The last equation of (2.10) can be reduced to an ordinary differential 
equation if the function Y(n) is introduced through the following rela- 
tion 

201 = OTSY (q) (2.12) 

Then the last equation of (2.10) takes the form 
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T + +- f,Y' - fo'Y + fo = 0 (2.13) 

Here fO(q) is a function 
with the stream function of 

solution by the relation 

connected 
the Bl asius 

The boundary conditions 

wf give for Y the form 

(2.11) for 

Y(0) = 0, u’ (4 = 1 (2.14) 
Fig. 1. 

Equation (2.13) with the conditions (2.14) was numerically integrated. 
The function ‘f’(q) obtained is shown in Fig. 1. 

We note that if 12.5) is violated then the system analogous to (2.10) 

will not reduce to a system of ordinary 

variable q. 

Figures 2 and 3 show the profiles of 

the transverse velocity w for different 

fixed value of the parameter 

m*x -_ +$ 

differential equations in the 

the longitudinal velocity u and 

values of the parameter WT at a 

= 0.5 

Figure 2 shows that the retardation of the flow in the x-direction 

due to electromagnetic forces is decreased with increasing 07. For OT-L m 

(inequality (2.5) will be satisfied if m*x < 1) the velocity profile in 

that direction tends toward the velocity profile for H,, = 0. 

Figure 3 shows that the transverse velocity grows at first with in- 

creasing OT and then decreases, w,,, being reached for OT = 1. For u-r+ 0~ 

the transverse velocity w - 0. 

We note that the approach to the Blasius solution for OT - m and 

fixed u is related to a decrease of the effective conductivity. From 

(1.1) it follows that, for OT - m and u = const, the currents become 

parallel to the magnetic field j x H - 0, i.e. in our case j, e 0, 

jz + 0 and, therefore, the electromagnetic action on the flow disappears. 

The coefficients of the longitudinal and transverse resistances, up 
to terms of order m.L and expressed in dimensional quantities, have the 

form 
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c, = 2yu-@u ) aY v=o = &(fof (0) + * f!a (0)) = 
= -?- (0.332 + 1.147*) 

pi 

CZ = 2vu-’ ?E Byv=o=+~ I m*x$&Y’ (0) = -L 1.35 m*xi$& 
VG 

Here R, = Ux/v is the Reynolds number, fz(q) is a function related to 
u by the relation u = U(fO ’ t mf2 ‘). 

Fig. 2. 

Fig. 3. 
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